Balancing energy and entropy: a minimalist model for the characterization of protein folding landscapes.

نویسندگان

  • Payel Das
  • Silvina Matysiak
  • Cecilia Clementi
چکیده

Coarse-grained models have been extremely valuable in promoting our understanding of protein folding. However, the quantitative accuracy of existing simplified models is strongly hindered either from the complete removal of frustration (as in the widely used Gō-like models) or from the compromise with the minimal frustration principle and/or realistic protein geometry (as in the simple on-lattice models). We present a coarse-grained model that "naturally" incorporates sequence details and energetic frustration into an overall minimally frustrated folding landscape. The model is coupled with an optimization procedure to design the parameters of the protein Hamiltonian to fold into a desired native structure. The application to the study of src-Src homology 3 domain shows that this coarse-grained model contains the main physical-chemical ingredients that are responsible for shaping the folding landscape of this protein. The results illustrate the importance of nonnative interactions and energetic heterogeneity for a quantitative characterization of folding mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmolyte-Induced Folding and Stability of Proteins: Concepts and Characterization

It is well-known that the typical protein’s three-dimensional structure is relatively unstable in harsh conditions. A practical approach to maintain the folded state and thus improve the stability and activity of proteins in unusual circumstances is to directly apply stabilizing substances such as osmolytes to the protein-containing solutions. Osmolytes as natural occurring organic molecules ty...

متن کامل

Coarse-grained sequences for protein folding and design.

We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the alpha/beta ubiquitin fold class and design...

متن کامل

Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding.

The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles δE, the energetic roughness ΔE, and t...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Folding funnels and frustration in off-lattice minimalist protein landscapes.

A full quantitative understanding of the protein folding problem is now becoming possible with the help of the energy landscape theory and the protein folding funnel concept. Good folding sequences have a landscape that resembles a rough funnel where the energy bias towards the native state is larger than its ruggedness. Such a landscape leads not only to fast folding and stable native conforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 29  شماره 

صفحات  -

تاریخ انتشار 2005